Abstract

Aim Numerous palaeoecological and genetic studies have shown that different tree species responded in very different ways to Pleistocene climatic oscillations. Some were forced into small refugia far from their current range, while others were able to survive in small refugia close to, or even within, their current natural range. In this study we examine the Pleistocene demography of a juniper species (Juniperus przewalskii, Cupressaceae) from the Qinghai-Tibetan Plateau. Location The Qinghai-Tibetan Plateau (QTP). Methods Eight nuclear loci were sequenced in 141 individuals from 20 natural populations distributed across the entire natural range of J. przewalskii, and coalescent analysis was used to test demographic hypotheses. Results The overall nucleotide diversity in the sample was low (πsil = 0.0029), with few rare alleles and pronounced population genetic structure (FST = 0.181). We detected a division previously found using chloroplast DNA markers: all segregating sites in populations from the central part of the QTP appear to be a subset of those found around the edge of the plateau, confirming the relatively young age of the former. In contrast to the middle Pleistocene bottlenecks detected in boreal tree species, the coalescent-based analyses failed to reject the standard neutral model for the juniper species considered here. Main conclusions Juniperus przewalskii did not undergo marked changes in population sizes during the Pleistocene, although this species seems to have experienced recent, post-glacial expansion. This finding is largely consistent with the limited number of previous studies on conifer species of the QTP, but contradicts findings of studies on boreal species. These findings have wide implications for understanding plant species’ responses to past climatic oscillations on the high-elevation QTP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call