Abstract

Electrochemical microsensors and biosensors have been widely used in many fields, in particular neurochemical monitoring, because of their features. Usually, hydrogen peroxide (HP), obtained as a by-product of an enzymatic reaction, is the detected compound on transducers made of precious metals, in particular platinum. The over-time increase in the price of platinum and its alloys requires the use of miniaturizable low-cost supports that can be suitably modified with the deposition of Pt particles; among them, graphite is the most widespread. In the present paper, carbon-composition resistors (CCRs) and pencil leads (PLs) of different diameters (0.3, 0.5 and 2.0 mm), mainly made up of graphite, clay and some other components were used as carbonaceous support for the deposition of platinum. Platinizations were carried out by means of cyclic voltammetry (CV) and constant potential amperometry (CPA) techniques. On the platinized supports, hydrogen peroxide (HP) and ascorbic acid (AA) sensitivity were assessed in order to verify the possibility of using them as transducers of amperometric biosensors. All the used protocols determined the occurrence of HP monitoring, not appreciable on carbonaceous surfaces. We chose 0.3 mm Ø PLs for the construction of glucose biosensors by appropriately modifying the platinum surface layering, a permselective polymer, an enzyme booster, the glucose oxidase (GOx) enzyme and a containing network. The biosensor constructed in this way demonstrated a behavior comparable to that obtained using classic platinum wires.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call