Abstract

AbstractWhereas slow solar wind is known to be highly structured, the fast (coronal hole origin) wind is usually considered to be homogeneous. Using measurements from Helios 1 + 2, ACE, Wind, and Ulysses, structure in the coronal hole origin solar wind is examined from 0.3 AU to 2.3 AU. Care is taken to collect and analyze intervals of “unperturbed coronal hole plasma.” In these intervals, solar wind structure is seen in the proton number density, proton temperature, proton specific entropy, magnetic field strength, magnetic field to density ratio, electron heat flux, helium abundance, heavy‐ion charge‐state ratios, and Alfvenicity. Typical structure amplitudes are factors of 2, far from homogeneous. Variations are also seen in the solar wind radial velocity. Using estimates of the motion of the solar wind origin footpoint on the Sun for the various spacecraft, the satellite time series measurements are converted to distance along the photosphere. Typical variation scale lengths for the solar wind structure are several variations per supergranule. The structure amplitude and structure scale sizes do not evolve with distance from the Sun from 0.3 to 2.3 AU. An argument is quantified that these variations are the scale expected for solar wind production in open magnetic flux funnels in coronal holes. Additionally, a population of magnetic field foldings (switchbacks, reversals) in the coronal hole plasma is examined: this population evolves with distance from the Sun such that the magnetic field is mostly Parker spiral aligned at 0.3 AU and becomes more misaligned with distance outward.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.