Abstract
The plasma membrane proton pump ATPase (H(+)-ATPase) plays a central role in transport across the plasma membrane. As a primary transporter, it mediates ATP-dependent H(+) extrusion to the extracellular space, thus creating pH and potential differences across the plasma membrane that activate a large set of secondary transporters. In several species, the H(+)-ATPase is encoded by a family of approximately 10 genes, classified into 5 gene subfamilies and we might ask what can this tell us about the concept, and the evolution, of gene families in plants. All the highly expressed H(+)-ATPase genes are classified into only two gene subfamilies, which diverged before the emergence of present plant species, raising the questions of the significance of the existence of these two well-conserved subfamilies and whether this is related to different kinetic or regulatory properties. Finally, what can we learn from experimental approaches that silence specific genes? In this review, we would like to discuss these questions in the light of recent data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.