Abstract
The H(+)-ATPase from the plasma membrane of Saccharomyces cerevisiae was isolated and purified. The rate of ATP hydrolysis and ATP binding was measured as a function of pH and the effect of the vanadate and erythrosine B inhibitors was investigated. The pH dependence of the rate of ATP hydrolysis forms a bell-shaped curve with a maximum at pH 6 and half-maximal rates at pH 5.0 and 7.4. Only the pH dependence between pH 6 and pH 7.6 is reversible. Above pH 7.6 and below pH 5.5, denaturation of the isolated enzyme is observed. The rate of ATP binding shows the same pH dependency as that of ATP hydrolysis. Both pH dependencies can be described by the dissociation of a monovalent acidic group with a pK of 7.4. It is concluded that the enzyme must be protonated before ATP binding. Vanadate does not inhibit ATP binding, ADP release or Pi release at concentrations where complete inhibition of ATP hydrolysis is observed. It is concluded that vanadate inhibits a step of the reaction cycle which occurs after Pi release. In contrast, erythrosine B inhibits ATP binding and thus affects the first step of the reaction cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.