Abstract

BackgroundShort-chain dehydrogenases/reductases (SDRs) form one of the largest and oldest NAD(P)(H) dependent oxidoreductase families. Despite a conserved ‘Rossmann-fold’ structure, members of the SDR superfamily exhibit low sequence similarities, which constituted a bottleneck in terms of identification. Recent classification methods, relying on hidden-Markov models (HMMs), improved identification and enabled the construction of a nomenclature. However, functional annotations of plant SDRs remain scarce.ResultsWide-scale analyses were performed on ten plant genomes. The combination of hidden Markov model (HMM) based analyses and similarity searches led to the construction of an exhaustive inventory of plant SDR. With 68 to 315 members found in each analysed genome, the inventory confirmed the over-representation of SDRs in plants compared to animals, fungi and prokaryotes. The plant SDRs were first classified into three major types — ‘classical’, ‘extended’ and ‘divergent’ — but a minority (10% of the predicted SDRs) could not be classified into these general types (‘unknown’ or ‘atypical’ types). In a second step, we could categorize the vast majority of land plant SDRs into a set of 49 families. Out of these 49 families, 35 appeared early during evolution since they are commonly found through all the Green Lineage. Yet, some SDR families — tropinone reductase-like proteins (SDR65C), ‘ABA2-like’-NAD dehydrogenase (SDR110C), ‘salutaridine/menthone-reductase-like’ proteins (SDR114C), ‘dihydroflavonol 4-reductase’-like proteins (SDR108E) and ‘isoflavone-reductase-like’ (SDR460A) proteins — have undergone significant functional diversification within vascular plants since they diverged from Bryophytes. Interestingly, these diversified families are either involved in the secondary metabolism routes (terpenoids, alkaloids, phenolics) or participate in developmental processes (hormone biosynthesis or catabolism, flower development), in opposition to SDR families involved in primary metabolism which are poorly diversified.ConclusionThe application of HMMs to plant genomes enabled us to identify 49 families that encompass all Angiosperms (‘higher plants’) SDRs, each family being sufficiently conserved to enable simpler analyses based only on overall sequence similarity. The multiplicity of SDRs in plant kingdom is mainly explained by the diversification of large families involved in different secondary metabolism pathways, suggesting that the chemical diversification that accompanied the emergence of vascular plants acted as a driving force for SDR evolution.

Highlights

  • Short-chain dehydrogenases/reductases (SDRs) form one of the largest and oldest NAD(P)(H) dependent oxidoreductase families

  • hidden Markov models (HMM)-driven inventory of plant Short-chain dehydrogenase/ reductase (SDR) Initial HMM analyses were performed on ten complete genomes: 4 Eudicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max), 3 Monocots (Zea mays, Oryza sativa and Sorghum bicolor), the lycophyte Selaginella moellendorffii, the moss Physcomitrella patens and the unicellular green alga Chlamydomonas reinhardtii (Table 1)

  • The predicted ‘proteomes’ deduced from the genome annotations were searched against three distinct sets of HMMs: the Pfam HMMs considered to encompass most SDR (PF00106, PF01370, PF01073), HMMs developed in the framework of the SDR nomenclature initiative [5,21] and a set of HMMs developed to predict the type (‘classical’, ‘extended’, ‘intermediary’, ‘divergent’ and ‘complex’) of SDR

Read more

Summary

Introduction

Short-chain dehydrogenases/reductases (SDRs) form one of the largest and oldest NAD(P)(H) dependent oxidoreductase families. Despite a conserved ‘Rossmann-fold’ structure, members of the SDR superfamily exhibit low sequence similarities, which constituted a bottleneck in terms of identification. Short-chain dehydrogenases/reductases (SDRs) constitute one of the largest and oldest protein superfamilies known to date. This ancient family, found in all domains of life (Archea, Eukaryotes, Prokaryotes and viruses), is characterized by large sequence divergences but several common properties: (i) a conserved 3D structure consisting of ‘Rossmann-fold’ β-sheet with α-helices on both sides, (ii) an N-terminal dinucleotide cofactor binding motif, (iii) an active site with a catalytical residue motif YxxxK [1,2]. 449 families have been listed in this nomenclature [6]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.