Abstract

BackgroundThe mechanisms and regulation for DNA replication in plant organelles are largely unknown, as few proteins involved in replisome assembly have been biochemically studied. A primase-helicase dubbed Twinkle (T7 gp4-like protein with intramitochondrial nucleoid localization) unwinds double-stranded DNA in metazoan mitochondria and plant organelles. Twinkle in plants is a bifunctional enzyme with an active primase module. This contrast with animal Twinkle in which the primase module is inactive. The organellar primase-helicase of Arabidopsis thaliana (AtTwinkle) harbors a primase module (AtPrimase) that consists of an RNA polymerase domain (RPD) and a Zn + + finger domain (ZFD).ResultsHerein, we investigate the mechanisms by which AtTwinkle recognizes its templating sequence and how primer synthesis and coupling to the organellar DNA polymerases occurs. Biochemical data show that the ZFD of the AtPrimase module is responsible for template recognition, and this recognition is achieved by residues N163, R166, and K168. The role of the ZFD in template recognition was also corroborated by swapping the RPDs of bacteriophage T7 primase and AtPrimase with their respective ZFDs. A chimeric primase harboring the ZFD of T7 primase and the RPD of AtPrimase synthesizes ribonucleotides from the T7 primase recognition sequence and conversely, a chimeric primase harboring the ZFD of AtPrimase and the RPD of T7 primase synthesizes ribonucleotides from the AtPrimase recognition sequence. A chimera harboring the RPDs of bacteriophage T7 and the ZBD of AtTwinkle efficiently synthesizes primers for the plant organellar DNA polymerase.ConclusionsWe conclude that the ZFD is responsible for recognizing a single-stranded sequence and for primer hand-off into the organellar DNA polymerases active site. The primase activity of plant Twinkle is consistent with phylogeny-based reconstructions that concluded that Twinkle´s last eukaryotic common ancestor (LECA) was an enzyme with primase and helicase activities. In plants, the primase domain is active, whereas the primase activity was lost in metazoans. Our data supports the notion that AtTwinkle synthesizes primers at the lagging-strand of the organellar replication fork.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call