Abstract

Modulating key dynamics of plant growth and development, the effects of the plant hormone cytokinin on animal cells gained much attention recently. Most previous studies on cytokinin effects on mammalian cells have been conducted with elevated cytokinin concentration (in the μM range). However, to examine physiologically relevant dose effects of cytokinins on animal cells, we systematically analyzed the impact of kinetin in cultured cells at low and high concentrations (1nM-10μM) and examined cytotoxic and genotoxic conditions. We furthermore measured the intrinsic antioxidant activity of kinetin in a cell-free system using the Ferric Reducing Antioxidant Power assay and in cells using the dihydroethidium staining method. Monitoring viability, we looked at kinetin effects in mammalian cells such as HL60 cells, HaCaT human keratinocyte cells, NRK rat epithelial kidney cells and human peripheral lymphocytes. Kinetin manifests no antioxidant activity in the cell free system and high doses of kinetin (500 nM and higher) reduce cell viability and mediate DNA damage in vitro. In contrast, low doses (concentrations up to 100 nM) of kinetin confer protection in cells against oxidative stress. Moreover, our results show that pretreatment of the cells with kinetin significantly reduces 4-nitroquinoline 1-oxide mediated reactive oxygen species production. Also, pretreatment with kinetin retains cellular GSH levels when they are also treated with the GSH-depleting agent patulin. Our results explicitly show that low kinetin doses reduce apoptosis and protect cells from oxidative stress mediated cell death. Future studies on the interaction between cytokinins and human cellular pathway targets will be intriguing.

Highlights

  • Cytokinins (CKs) are an adenine as well as non-adenine derived heterogeneous class of regulatory molecules that participate in almost every aspect of plant biology

  • We measured the intrinsic antioxidant activity of kinetin in a cell free system using the Ferric reducing antioxidant power (FRAP) assay and in cells using dihydroethidium (DHE) staining, and its ability to act as antioxidant against 4-Nitroquinoline 1-oxide (NQO) that mediates oxidative stress

  • The chemicals kinetin and sodium arsenite were obtained from Sigma-Aldrich (Dorset, Germany). 4-Nitroquinoline 1-oxide (NQO-sc256815) was purchased from Santa Cruz Biotechnology (Heidelberg, Germany), dihydroethidium (DHE) was purchased from Merck

Read more

Summary

Introduction

Cytokinins (CKs) are an adenine as well as non-adenine derived heterogeneous class of regulatory molecules that participate in almost every aspect of plant biology. We measured the intrinsic antioxidant activity of kinetin in a cell free system using the FRAP assay and in cells using dihydroethidium (DHE) staining, and its ability to act as antioxidant against NQO that mediates oxidative stress.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.