Abstract

Metarhizium species have recently been found to be plant rhizosphere associates as well as insect pathogens. Because of their abundance, rhizospheric Metarhizium could have enormous environmental impact, with co-evolutionary implications. Here, we tested the hypothesis that some Metarhizium spp. are multifactorial plant growth promoters. In two consecutive years, corn seeds were treated with entomopathogenic Metarhizium spp. and field tested at the Beltsville Facility in Maryland. Seed treatments included application of green fluorescent protein (GFP)-tagged strains of Metarhizium brunneum, Metarhizium anisopliae, Metarhizium robertsii, and M. robertsii gene disruption mutants that were either avirulent (Δmcl1), unable to adhere to plant roots (Δmad2), or poorly utilized root exudates (Δmrt). Relative to seeds treated with heat-killed conidia, M. brunneum, M. anisopliae, and M. robertsii significantly increased leaf collar formation (by 15, 14, and 13%), stalk length (by 16, 10, and 10%), average ear biomass (by 61, 56, and 36%), and average stalk and foliage biomass (by 46, 36, and 33%). Their major impact on corn yield was during early vegetative growth by allowing the plants to establish earlier and thereby potentially outpacing ambient biotic and abiotic stressors. Δmcl1 colonized roots and promoted plant growth to a similar extent as the parent wild type, showing that Metarhizium populations are plant growth promoters irrespective of their role as insect pathogens. In contrast, rhizospheric populations and growth promotion by Δmrt were significantly reduced, and Δmad2 failed to colonize roots or impact plant growth, suggesting that colonization of the root is a prerequisite for most, if not all, of the beneficial effects of Metarhizium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call