Abstract

An approach to the planning of optimal robotic motions in the pres ence of obstacles is proposed. It is based on the use of nonclassical formulation of Pontryagin's maximum principle, which makes it possible to handle efficiently the state constraints resulting from the robotic tasks to be performed. The convergence properties of the algorithm are examined. A computer example involving a pla nar redundant manipulator of three revolute kinematic pairs, which performs two tasks in a two-dimensional work space including ob stacles, is given. A comparison of the proposed approach with the well-known method of penalty function is made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.