Abstract
We prove the Plancherel formula for spherical Schwartz functions on a reductive symmetric space. Our starting point is an inversion formula for spherical smooth compactly supported functions. The latter formula was earlier obtained from the most continuous part of the Plancherel formula by means of a residue calculus. In the course of the present paper we also obtain new proofs of the uniform tempered estimates for normalized Eisenstein integrals and of the Maass–Selberg relations satisfied by the associated C-functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.