Abstract
The aeroacoustic noise generated by a high speed, planar gas jet impinging on a flat plate is investigated experimentally. The jet used in this study is typical of those commonly found in industrial applications such as in various coating control and heat transfer processes. Normal jet impingement on the plate is found to generate strong acoustic tones over a wide range of impingement distances and jet velocities. The characteristics of these tones, as a function of the jet velocity and impingement distance, are quantified. Phase and amplitude measurements of the pressure fluctuations on the impingement plate indicate that the acoustic tones are generated by an antisymmetric instability mode of the jet oscillation. The effect of plate inclination in both the transverse and span-wise directions, with respect to the incident jet, is also studied. The jet-plate tone is found to be much more sensitive to changes in the span-wise plate inclination than to changes in the transverse inclination, but in both cases, a complete suppression of the tone is found to be possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.