Abstract

Gait analysis using foot-worn inertial measurement units has proven to be a reliable tool to diagnose and monitor many neurological and musculoskeletal indications. However, only few studies have investigated the robustness of such systems to changes in the sensor attachment and no consensus for suitable sensor positions exists in the research community. Specifically for unsupervised real-world measurements, understanding how the reliability of the monitoring system changes when the sensor is attached differently is from high importance. In these scenarios, placement variations are expected because of user error or personal preferences. In this manuscript, we present the largest study to date comparing different sensor positions and attachments. We recorded 9000 strides with motion-capture reference from 14 healthy participants with six synchronized sensors attached at each foot. Spatial gait parameters were calculated using a double-integration method and compared to the reference system. The results indicate that relevant differences in the accuracy of the stride length exists between the sensor positions. While the average error over multiple strides is comparable, single stride errors and variability parameters differ greatly. We further present a physics model and an analysis of the raw sensor data to understand the origin of the observed differences. This analysis indicates that a variety of attachment parameters can influence the systems' performance. While this is only the starting point to understand and mitigate these types of errors, we conclude that sensor systems and algorithms must be reevaluated when the sensor position or attachment changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call