Abstract

Light flow in nonlinear media can exhibit quantum hydrodynamical features which are profoundly different from those of classical fluids. Here, we show that a rather extreme regime of quantum hydrodynamics can be accessed by exploring the piston problem (a paradigm in gas dynamics) for light, and its generalization, named after the celebrated mathematician Riemann, where the piston acts on a concomitant abrupt change of photon density. Our experiment reveals regimes featuring optical rarefaction (retracting piston) or shock (pushing piston) wave pairs, and most importantly the transition to a peculiar type of flow, occurring above a precise critical piston velocity, where the light shocks are smoothly interconnected by a large contrast, periodic, fully nonlinear wave. The transition to such extreme hydrodynamic state is generic for superfluids, but to date remained elusive to any other quantum fluid system. Our full-fiber setup used to observe this phenomenon in temporal domain proves to be a versatile alternative to other platforms currently employed to investigate the hydrodynamical properties of quantum fluids of light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.