Abstract
The Pseudomonas aeruginosa pilG gene, encoding a protein which is involved in pilus production, was cloned by phenotypic complementation of a unique, pilus-defective mutant of strain PAO1. This mutant, designated FA2, although resistant to the pilus-specific phage D3112 was sensitive to the pilus-specific phages B3 and F116L. In spite of the unusual phage sensitivity pattern, FA2 lacked the ability to produce functional polar pili (pil) and was incapable of twitching motility (twt). Genetic analysis revealed that the FA2 pil mutation, designated pilG1, mapped near the met-28 marker located at 20 min and was distinct from the previously described pilT mutation. This map location was confirmed by localization of a 6.2-kb EcoRI fragment that complemented FA2 on the SpeI and DpnI physical map of the P. aeruginosa PAO1 chromosome. A 700-bp region encompassing the pilG gene was sequenced, and a 405-bp open reading frame, with characteristic P. aeruginosa codon bias, was identified. The molecular weight of the protein predicted from the amino acid sequence of PilG, which was determined to be 14,717, corresponded very closely to that of a polypeptide with the apparent molecular weight of 15,000 detected after expression of pilG from the T7 promoter in Escherichia coli. Moreover, the predicted amino acid sequence of PilG showed significant homology to that of the enteric CheY protein, a single-domain response regulator. A chromosomal pilG insertion mutant, constructed by allele replacement of the wild-type gene, was not capable of pilus production or twitching motility but displayed normal flagellum-mediated motility. These results, therefore, suggest that PilG may be an important part of the signal transduction system involved in the elaboration of P. aeruginosa pili.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.