Abstract

Bacteriophages (phages) can significantly influence the composition and functions of their host communities, and enhance host pathogenicity via the transport of phage-encoded virulence genes. Phages are the main component of animal gut viruses, however, there are few reports on the piglet gut phageome and its contribution to virulence genes. Here, a total of 185 virulence genes from 59,955 predicted genes of gut phages in weaned piglets were identified, with 0.688 % of the phage contigs coding for at least one virulence gene. The virulence gene pblA was the most abundant, with various virulence genes significantly correlated with gut phages and their encoded mobile gene element (MGE) genes. Importantly, multiple virulence genes and MGE genes coexist in some phage sequences, and up to 12 virulence genes were detected in a single phage sequence, greatly increasing the risk of phage-mediated transmission of virulence genes into the bacterial genome. In addition, diarrhoea has driven changes in the composition and structure of phage and bacterial communities in the intestinal tract of weaned piglets, significantly increasing the abundance of phage contigs encoding both virulence genes and MGE genes in faecal samples, which potentially increases the risk of phage-mediated virulence genes being transfected into the gut bacterial genome. In summary, this study expands our understanding of the gut microbiome of piglets, advances our understanding of the potential role of phages in driving host pathogenesis in the gut system, and provides new insights into the sources of virulence genes and genetic evolution of bacteria in pig farm environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call