Abstract

Effects of varying Mn and Ni concentrations on the structure and piezoresistive properties of CuMnNi films deposited by magnetron sputtering with a segmented target were investigated. An increase in the Ni content refines the CuNi film grains, inducing an increase in defects such as internal micropores and a decrease in film density. At the same time, the positive piezoresistive coefficient of the film changes to negative. When 17.5 at.% Ni was added, the negative piezoresistive coefficient of the CuNi film was −2.0 × 10−4 GPa−1. The doping of Ni has a weakening effect on the positive piezoresistive effect of the film. Adding Mn into Cu refines the film grains while increasing the film density. The surface roughness of the film decreases with the increase in Mn content. When the Mn content was 16.7 at.%, the piezoresistive coefficient reached the largest recorded value of 23.81 × 10−4 GPa−1, and the film exhibited excellent repeatability in multiple piezoresistive tests. After the CuMn film with 16.7 at.% Mn was annealed at 400 °C for 2 h, the film grains grew slightly and the film residual stress decreased. The optimization of the film structure can reduce the scattering of electrons during transportation. The piezoresistive coefficient of the film was further improved to 35.78 × 10−4 GPa−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.