Abstract

This letter reports on the piezoresistive effect of top–down fabricated 3C-SiC nanowires (NWs). Focused ion beam was utilized to create p-type 3C-SiC NWs from a 3C-SiC thin film with a carrier concentration of $5 \times 10^{18}$ cm $^{-3}$ epitaxially grown on a Si substrate. The as-fabricated NWs were then subjected to tensile strains varying from 0 to 280 $\mu \varepsilon $ . Experimental data showed that the p-type 3C-SiC NWs possess a large gauge factor of 35, which is at least one order of magnitude larger than that of other hard materials, such as carbon nanotubes and graphene. This large gauge factor and the linear relationship between the relative resistance change and the applied strain in the SiC NWs indicate their potential for nanoelectromechanical systems sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.