Abstract

In this article we consider the Picard group ${\text {SL}}(2,\mathbb {Z}[i])$, viewed as a discrete subgroup of the isometries of hyperbolic space. We fix a canonical choice of generators and then construct a Markov partition for the action of the group on the sphere at infinity. Our main application is to the study of the zeta function associated to the associated three-dimensional hyperbolic manifold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.