Abstract

Long-term graft survival after organ transplantation is difficult to achieve because of the development of chronic rejection. One cause of chronic rejection arises from antibody-mediated rejection (AMR), which is dependent on the production of donor-specific antibodies (DSA). Current immunosuppression in organ transplantation is effective in preventing acute T cell-mediated rejection, but the risk of DSA production and graft loss due to AMR remains unchanged. Phosphatidylinositol-3-kinase p110δ (PI3Kδ), a member of the family of PI3K lipid kinases, is a key mediator of B cell activation, proliferation and antibody production. AS2541019 is a novel PI3Kδ selective inhibitor that prevents antibody production by inhibiting B cell immunity. The purpose of this study was to evaluate the inhibitory effect of AS2541019 on DSA production in preclinical rodent and non-human primate allotransplant models. Concomitant administration of AS2541019 with tacrolimus and mycophenolate mofetil (MMF) inhibited de novo DSA production in an ACI-to-Lewis rat cardiac allotransplant model. To predict the efficacy of AS2541019 in clinical practice, we evaluated its effects in cynomolgus monkeys. AS2541019 inhibited B cell proliferation and major histocompatibility complex (MHC) class II expression on B cells in cynomolgus monkeys. Oral administration of AS2541019 inhibited MHC class II expression on peripheral B cells and anti-tetanus toxoid antibody production. In cynomolgus monkey renal allotransplant model, concomitant administration of AS2541019 with tacrolimus and MMF significantly inhibited de novo DSA production. Together, our findings indicate that the PI3Kδ selective inhibitor AS2541019 is a potential candidate for preventing AMR development by inhibiting DSA production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call