Abstract
Developmental deformity of the mandible is one of the most common craniofacial malformations and is closely related to abnormal condylar growth. In this study, the role of PI3K/Akt signalling in the regulation of chondrocyte proliferation and hypertrophic differentiation in the condylar cartilage was studied. Immunohistochemical staining was used to investigate the expression of PI3K and p-Akt in the rat condyle cartilage. Rat condylar chondrocytes were cultured for the investigation of chondrocyte proliferation and hypertrophic differentiation when PI3K/Akt was inhibited. In addition, organ culture of the rat mandibular condyle was performed to evaluate the condyle cartilage growth while PI3K/Akt was inhibited. PI3K-positive cells and p-Akt-positive cells showing cytoplasmic staining were found to be present in the condylar cartilage. Reduced cell proliferation was observed in the culture of rat condylar chondrocytes when PI3K/Akt was inhibited; however, the hypertrophic differentiation level was increased. The proliferative zone thickness of condylar cartilage in the experimental group was less than that in the control group (P=0.00185), but the hypertrophic zone was greater than that in the control group (P=0.01048). PI3K/Akt signalling exerts opposite influences on chondrocyte proliferation and hypertrophic differentiation of the condylar cartilage, and these data suggest that PI3K/Akt is a potential intracellular regulation signal pathway in condylar cartilage development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Oral & Maxillofacial Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.