Abstract

When successful, the operation of local and international networks of crop seed distribution or “seed systems” ensures farmer access to seed and impacts rural livelihoods and food security. Farmers are both consumers and producers in seed systems and benefit from access to global markets. However, phytosanitary measures and seed purity tests are also needed to maintain seed quality and prevent the spread of costly weeds, pests and diseases, in some countries regulatory controls have been in place since the 1800s. Nevertheless, seed contaminants are internationally implicated in between 7% and 37% of the invasive plant species and many of the agricultural pests and diseases. We assess biosecurity risk across international seed trade networks of forage crops using models of contaminant spread that integrate network connectivity and trade volume. To stochastically model hypothetical contaminants through global seed trade networks, realistic dispersal probabilities were estimated from quarantine weed seed detections and incursions from border security interception data in New Zealand. For our test case we use contaminants linked to the global trade of ryegrass and clover seed. Between 2014 and 2018 only four quarantine weed species (222 species and several genera are on the quarantine schedule) warranting risk mitigation were detected at the border. Quarantine weeds were rare considering that average import volumes were over 190 tonnes for ryegrass and clover, but 105 unregulated contaminant species were allowed in. Ryegrass and clover seed imports each led to one post-border weed incursion response over 20 years. Trade reports revealed complex global seed trade networks spanning >134 (ryegrass) and >110 (clover) countries. Simulations showed contaminants could disperse to as many as 50 (clover) or 80 (ryegrass) countries within 10 time-steps. Risk assessed via network models differed 18% (ryegrass) or 48% (clover) of the time compared to risk assessed on trade volumes. We conclude that biosecurity risk is driven by network position, the number of trading connections and trade volume. Risk mitigation measures could involve the use of more comprehensive lists of regulated species, comprehensive inspection protocols, or the addition of field surveillance at farms where seed is planted.

Highlights

  • Seeds are arguably a farm’s most important input

  • We focus on biosecurity risks from regulated non-crop seed contaminants associated with imported ryegrass (Lolium spp., L. perenne, L. multiflorum) and clover (Trifolium spp., T. repens L., T. pratense L., and rarely T. alexandrinum L.)

  • In our efforts to understand seed contaminants, and model their spread, we examined weed seed contaminants that were detected moving through the network into New Zealand

Read more

Summary

Introduction

Seeds are arguably a farm’s most important input (and often a major output). Networks of crop seed distribution operate regionally, and internationally, driving the success and profitability of agricultural systems [1]. We are interested in seed for sowing (as opposed to seed for human or animal consumption) that is moved across international borders This can include germplasm for varietal development and research [6], seed for multiplication, which may or may not be certified or named varieties. New Zealand benefits greatly from its participation in the international seed system which directly contributes between 300 to 600 million (NZD) annually to the gross domestic product (GDP) and approximately ten times that indirectly [7,8]. It is a leading seed producer of crops like ryegrass, radish, white clover, and carrots [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call