Abstract

Edible seaweeds have been consumed by Asian coastal communities since ancient times. Fucus vesiculosus and Ascophyllum nodosum extracts have been traditionally used for the treatment of obesity and several gastrointestinal diseases. We evaluated the ability of extracts obtained from these algae to inhibit the digestive enzymes α-amylase and α-glucosidase in vitro, and control postprandial plasma glucose levels in a mouse model of non-alcoholic steatohepatitis (NASH); a liver disease often preceding the development of Type 2 diabetes (T2DM). This model was obtained by the administration of a high-fat diet. Our results demonstrate that these algae only delayed and reduced the peak of blood glucose (p < 0.05) in mice fed with normal diet, without changing the area under the blood glucose curve (AUC). In the model of NASH, the phytocomplex was able to reduce both the postprandial glycaemic peak, and the AUC. The administration of the extract in a diet particularly rich in fat is associated with a delay in carbohydrate digestion, but also with a decrease in its assimilation. In conclusion, our results indicate that this algal extract may be useful in the control of carbohydrate digestion and absorption. This effect may be therapeutically exploited to prevent the transition of NASH to T2DM.

Highlights

  • Edible seaweed, an available food source, has probably been consumed by coastal communities since the dawn of time, especially in Asia [1]

  • Further signals in the aliphatic region support the presence of fatty acid derivatives, due to a broad triplet at δ 0.89 ppm which is ascribable to the terminal methyl group, broad multiplets at δ 1.29–1.33 ppm typical of aliphatic CH2, and triplets at δ 2.03 and 2.35 ppm which are ascribable to the CH2 nearby double bond and carbonyl function, respectively

  • Preclinical and clinical studies have already demonstrated that algal extracts can reduce glucose release from maltose and/or sucrose by inhibiting α-glucosidase [32,35]; an enzyme located in the brush-border membrane of the small intestine. α-Glucosidase inhibitors, such as acarbose and voglibose [36,37], are widely used for the treatment of T2D

Read more

Summary

Introduction

An available food source, has probably been consumed by coastal communities since the dawn of time, especially in Asia [1] Seaweeds and their organic extracts are known to contain several bioactive polysaccharides with numerous health benefits [2,3,4,5,6,7,8]. Algae extracts are considered a good source of digestive enzyme inhibitors They contain polyphenolic compounds, such as bromophenols [15,16] and phlorotannins (PHTs) [5,17], which are well known α-glucosidase inhibitors. It has been reported that the inhibition of α-amylase and α-glucosidase can significantly lower the increase of the blood glucose level, after a mixed carbohydrate meal, by delaying the absorption of glucose [21]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call