Abstract

Field and laboratory studies of the iconic nectarivorous and 'pollenivorous' honey possum, Tarsipes rostratus, are reviewed with the aim of identifying aspects of its physiology that are as yet poorly understood and needed to implement management strategies for its long-term conservation. Dietary specialisations include the loss of teeth, a modified gut with a high rate of passage, exceptionally low minimum nitrogen requirements, an apparently high basal metabolic rate and a permanently polyuric kidney. In contrast, its reproductive physiology is plesiomorphic, combining aspects such as a post-partum oestrus, embryonic diapause, photoperiodicity and extended maternal care that are usually separate characteristics of other marsupial groups. In common with a number of other marsupials, the honey possum has the potential for trichromatic colour vision and has been the subject of several studies attempting to correlate visual quality with ecological realities. Field physiological studies have established its high rates of nectar and pollen intake needed to maintain energy balance and highlight the need for a constant intake from floral sources. Early allometric studies suggesting that the honey possum's relatively low reproductive rate may be linked to a diet limited in protein have not been supported and nitrogen intakes in the field exceed by a factor of 10 the animal's basic requirements for balance. Measurements of rates of protein turnover in field-caught lactating females suggest that they divert nitrogen from the protein pool to milk production by reducing rates of degradation, rather than by increasing rates of synthesis of protein. Although not yet an endangered species, the honey possum's habitat has been drastically reduced since European occupation of Australia and future-targeted research on the animal's unique physiology and habitat linkage is needed that can be translated into effective management practices. Only then will its long-term survival be assured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.