Abstract
Alternative splicing is a substantial contributor to the high complexity of transcriptomes of multicellular eukaryotes. In this Review, we discuss the accumulated evidence that most of this complexity is reflected at the protein level and fundamentally shapes the physiology and pathology of organisms. This notion is supported not only by genome-wide analyses but, mainly, by detailed studies showing that global and gene-specific modulations of alternative splicing regulate highly diverse processes such as tissue-specific and species-specific cell differentiation, thermal regulation, neuron self-avoidance, infrared sensing, the Warburg effect, maintenance of telomere length, cancer and autism spectrum disorders (ASD). We also discuss how mastering the control of alternative splicing paved the way to clinically approved therapies for hereditary diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.