Abstract

Phosphoribulokinase (PrkA) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) have been proposed to create a heterologous Rubisco-based engineered pathway in Escherichia coli for in situ CO2 recycling. While the feasibility of a Rubisco-based engineered pathway has been shown, heterologous expressions of PrkA and Rubisco also induced physiological responses in E. coli that may compete with CO2 recycling. In this study, the metabolic shifts caused by PrkA and Rubisco were investigated in recombinant strains where ppc and pta genes (encodes phosphoenolpyruvate carboxylase and phosphate acetyltransferase, respectively) were deleted from E. coli MZLF (E. coli BL21(DE3) Δzwf, ΔldhA, Δfrd). It has been shown that the demand for ATP created by the expression of PrkA significantly enhanced the glucose consumptions of E. coli CC (MZLF Δppc) and E. coli CA (MZLF Δppc, Δpta). The accompanying metabolic shift is suggested to be the mgsA route (the methylglyoxal pathway) which results in the lactate production for reaching the redox balance. The overexpression of Rubisco not only enhanced glucose consumption but also bacterial growth. Instead of the mgsA route, the overproduction of the reducing power was balanced by the ethanol production. It is suggested that Rubisco induces a high demand for acetyl-CoA which is subsequently used by the glyoxylate shunt. Therefore, Rubisco can enhance bacterial growth. This study suggests that responses induced by the expression of PrkA and Rubisco will reach a new energy balance profile inside the cell. The new profile results in a new distribution of the carbon flow and thus carbons cannot be majorly directed to the Rubisco-based engineered pathway.

Highlights

  • The Calvin-Benson-Bassham (CBB) cycle widely exists in plants, microalgae, cyanobacteria, and some prokaryotes [1]

  • This indicates that Rubisco may induce a high demand for acetyl-CoA which is subsequently used by the glyoxylate shunt

  • The enhanced glycolysis through the EMP pathway as well as enhanced auxiliary pathways become a competition for the Rubisco engineered pathway to in situ recycle CO2

Read more

Summary

Introduction

The Calvin-Benson-Bassham (CBB) cycle widely exists in plants, microalgae, cyanobacteria, and some prokaryotes [1]. It is the primary pathway that is responsible for the carbon fixation in our ecosystem. The key enzyme of the CBB cycle is ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which incorporates carbon dioxide into the second carbon of the phosphoryl-pentose backbone. Previous studies have shown that the eukaryotic form I Rubisco is difficult to be functionally expressed in E. coli [2,3], whereas the cyanobacterial forms I, II, and III Rubisco can be [4,5,6]. Phosphoribulokinase (PrkA) catalyzes phosphorylation of ribulose 5-phosphate (Ru5P) to form ribulose-1,5-bisphosphate (RuBP), which is the substrate of Rubisco.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call