Abstract

Combative sport is one of the most physically intense forms of exercise, yet the effect of recovery interventions has been largely unexplored. We investigated the effect of cold-water immersion on structural, inflammatory, and physiological stress biomarkers following a mixed martial arts (MMA) contest preparation training session in comparison with passive recovery. Semiprofessional MMA competitors (n = 15) were randomly assigned to a cold-water immersion (15 min at 10 °C) or passive recovery protocol (ambient air) completed immediately following a contest preparation training session. Markers of muscle damage (urinary myoglobin), inflammation/oxidative stress (urinary neopterin + total neopterin (neopterin + 7,8-dihydroneopterin)), and hypothalamic-pituitary axis (HPA) activation (saliva cortisol) were determined before, immediately after, and 1, 2, and 24 h postsession. Ratings of perceived soreness and fatigue, counter movement jump, and gastrointestinal temperature were also measured. Concentrations of all biomarkers increased significantly (p < 0.05) postsession. Cold water immersion attenuated increases in urinary neopterin (p < 0.05, d = 0.58), total neopterin (p < 0.05, d = 0.89), and saliva cortisol after 2 h (p < 0.05, d = 0.68) and urinary neopterin again at 24 h (p < 0.01, d = 0.57) in comparison with passive recovery. Perceived soreness, fatigue, and gastrointestinal temperatures were also lower for the cold-water immersion group at several time points postsession whilst counter movement jump did not differ. Combative sport athletes who are subjected to impact-induced stress may benefit from immediate cold-water immersion as a simple recovery intervention that reduces delayed onset muscle soreness as well as macrophage and HPA activation whilst not impairing functional performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.