Abstract
Salinity is one of the most common abiotic stress factors affecting different biochemical and physiological processes in plants, inhibiting plant growth, and greatly reducing productivity. During the last decade, silicon (Si) supplementation was intensively studied and now is proposed as one of the most convincing methods to improve plant tolerance to salt stress. In this review, we discuss recent papers investigating the role of Si in modulating molecular, biochemical, and physiological processes that are negatively affected by high salinity. Although multiple reports have demonstrated the beneficial effects of Si application in mitigating salt stress, the exact molecular mechanism underlying these effects is not yet well understood. In this review, we focus on the localisation of Si transporters and the mechanism of Si uptake, accumulation, and deposition to understand the role of Si in various relevant physiological processes. Further, we discuss the role of Si supplementation in antioxidant response, maintenance of photosynthesis efficiency, and production of osmoprotectants. Additionally, we highlight crosstalk of Si with other ions, lignin, and phytohormones. Finally, we suggest some directions for future work, which could improve our understanding of the role of Si in plants under salt stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.