Abstract

One-year-old olive (Olea europaea L. cv. Zard) plants were treated with 0.5, 1, and 2 mM salicylic acid (SA) and then exposed to nonfreezing and freezing temperatures (−5, −10, and −20°C) for 10 h. Untreated plants served as a control. Exposure to freezing temperatures caused a considerable increase in ion leakage and lipid peroxidation in olive leaves. Treatment with suitable exogenous SA (1.0 mM) prevented the increase in the ion leakage and lipid peroxidation caused by freezing temperatures, especially at −5 and −10°C. SA-induced freezing tolerance was accompanied by increased activities of antioxidant enzymes, such as guaiacol peroxidase, catalase, ascorbate peroxidase, and polyphenol oxidase, as compared to control plants. Proline, total phenolic content, and antioxidant capacity of olive leaves were declined significantly after exposure to freezing temperature, and their content decreased with lowering of freezing temperatures, while treatment with 1 mM SA induced a significant increase in their content. As a summary of these results, suitable concentration of SA (1 mM) could enhance freezing tolerance of olive plant by increasing antioxidant enzyme activities and decreasing MDA content through cell membrane integrity maintenance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call