Abstract

Fusion power plant designs based on magnetic confinement, such as the tokamak design, offer a promising route to sustainable fusion power but require robust exhaust solutions capable of tolerating intense heat and particle fluxes from the plasma at the core of the device. Turbulent plasma transport in the region where the interface between the plasma and the materials of the device is handled - called the divertor volume - is poorly understood, yet impacts several key factors ultimately affecting device performance. In this article a comprehensive study of the underlying physics of turbulence in the divertor volume is conducted using data collected in the final experimental campaign of the Mega Ampere Spherical Tokamak device, compared to high fidelity nonlinear simulations. The physics of the turbulence is shown to be strongly dependant on the geometry of the divertor volume - a potentially important result as the community looks to advanced divertor designs with complex geometry for future fusion power plants. These results lay the foundations of a first-principles physics basis for turbulent transport in the tokamak divertor, providing a critical step towards a predictive understanding of tokamak divertor plasma solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call