Abstract

Spherical torus magnetic confinement systems, covering spheromaks and spherical tokamaks (STs), are reviewed. As well as being potentially very important for fusion, spherical tori research is enhancing our understanding of magnetic confinement systems with wider applications than fusion research. The studies contribute to the conventional tokamak, for example, ITER via a range of scalings, as well as to our understanding of `quiescent' plasmas and those subject to `turbulent magnetohydrodynamic (MHD) relaxation'. The theoretical and experimental properties are described, showing how these vary with configuration and contrasting them with the conventional aspect ratio tokamak. Topics covered include equilibrium, refuelling, helicity injection, influence of trapped particle fraction, plasma heating, confinement, stability (including pressure limits and energetic particle instabilities) and disruption resilience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.