Abstract

The majority of DNA in living cells is strongly bent. However, this strong bending regime is poorly understood. While the weak bending regime can be approximated by Hooke's law, it is not clear if that is still valid for large bending angles. The experimental evidence is controversial. We explore the strong bending regime of the double helix using a model that represents the solvent implicitly, which allows for greater efficiency. First, we are able to reproduce results of Strauss and Maher. Next, we compare the energetics of weakly and strongly bent DNA. We find that Hooke's law is violated for strongly bent DNA and discuss the energetic contribution that may be responsible for the effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.