Abstract

One of the most surprising consequences of quantum mechanics is the entanglement of two or more distant particles. In an entangled EPR two-particle system, the value of the momentum (position) for neither single subsystem is determined. However, if one of the subsystems is measured to have a certain momentum (position), the other subsystem is determined to have a unique corresponding value, despite the distance between them. This peculiar behavior of an entangled quantum system has surprisingly been observed experimentally in two-photon temporal and spatial correlation measurements, such as “ghost” interference and “ghost” imaging. This article addresses the fundamental concerns behind these experimental observations and to explore the nonclassical nature of two-photon superposition by emphasizing the physics of 2 ≠ 1 + 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call