Abstract

The aim of this work is to study the morphological characteristics via fractal analysis and the alterations of the thermotropic behavior of dipalmitoylphosphatidylcholine (DPPC) liposomes, caused by the incorporation of cholesterol, poly(amidoamine) (PAMAM) dendrimer, and MPOx (poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline)) gradient block copolymer (9:1 molar ratio). A gamut of light scattering techniques and differential scanning calorimetry were used in order to extract information on the morphological (in different dispersion media) and thermodynamic characteristics of liposomal drug nanocarriers, respectively. The vesicles’ structure of liposomes has a different thermodynamic content, which corresponds to a different thermotropic behavior, in comparison to pure lipid bilayers. The observed metastable phase only for DPPC liposomes has been considered as a “physical impurity”, which leads to “physical incompatibility” and consequently promotes the aggregation of DPPC liposomes in aqueous media. The incorporation of biomaterials such as PAMAM G4 and MPOx, caused alterations in the thermotropic behavior of DPPC liposomes affecting only the main transition specific enthalpy ΔH. All the other calorimetric parameters remained unaltered. These findings supported the hypothesis that the exceptional stability and transition cooperativity of the chimeric liposomal membrane might be due to the reduction of the vesicle size with the smaller membrane curvature that is indicated by the fractal dimensionality of the system. In conclusion, the results from the thermal analysis of the liposomal systems were in line with the picture of their structural characteristics, as indicated by the interplay between physicochemical and thermodynamical parameters, which determines their fractal morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.