Abstract

The process of volume change of cells subject to osmotic shocks or isosmotic entrance of permeant solute is formulated on the basis of the accepted structure for the plasma membrane and a physico-chemical approach similar to that recently developed. The effect of relevant parameters is discussed and theoretical equilibrium values for the variables are calculated in connection with water and permeant solute permeability determinations. Although a sorption-diffusional mechanism for solute and/or water volume flow within the membrane is assumed in both cases, the kinetics of volume change is shown to be totally different between them. In the isosmotic process a fixed relationship, given by the total solute concentration, is shown to exist between the permeant solute and volume fluxes to the cell, thereby implying a definite value for the volume fraction of water in the migration pathway, higher than 90%. The bi-phase osmotic regulatory response caused by permeant solute is simulated on the basis of an osmotic and isosmotic processes in series, showing good agreement with general behavior. Finally, an explanation to the problem of volume flow and forces in connection with a diffusional mechanism in biological and artificial membranes, is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.