Abstract

To gain a better understanding of the factors influencing spore adhesion in dairy manufacturing plants, casein-modified glass surfaces were prepared and characterized and their effect on the adhesion kinetics of spores from a Geobacillus sp., isolated from a dairy manufacturing plant (DMP) was assessed using a flow chamber. Surfaces were produced by initially silanizing glass using (3-glycidyloxypropyl) trimethoxysilane (GPS) or (3-aminopropyl) triethoxysilane to form epoxy-functionalized (G-GPS) or amino-functionalized glass (G-NH2) substrata. Casein was grafted to the G-GPS directly by its primary amino groups (G-GPS-casein) or to G-NH2 by employing glutaraldehyde as a linking agent (G-NH2-glutar-casein). The surfaces were characterised using streaming potential measurements, contact angle goniometry, infrared spectroscopy and scanning electron microscopy. The attachment rate of spores suspended in 0.1 M KCl at pH 6.8, was highest on the positively charged (+14 mV) G-NH2 surface (333 spores cm−2 s−1) compared to the negatively charged glass (−22 mV), G-GPS (−20 mV) or G-GPS-casein (−21 mV) surfaces (162, 17 or 6 spores cm−2 s−1 respectively). Whilst there was a clear decrease in attachment rate to negatively charged casein-modified surfaces compared to the positively charged amine surface, there was no clear relationship between surface hydrophobicity and spore attachment rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.