Abstract

ABSTRACT Previous studies on the fitting of spectral energy distributions (SEDs) often apply the external-Compton process to interpret the high-energy peak of low-synchrotron-peaked (LSP) BL Lac objects (LBLs), despite the lack of strong broad emission lines observed for LBLs. In this work, we collect quasi-simultaneous multiwavelength data of 15 LBLs from the Fermi fourth LAT AGN catalogue (4LAC). We propose an analytical method to assess the necessity of external photon fields in the framework of one-zone scenario. Following derived analytical results, we fit the SEDs of these LBLs with the conventional one-zone leptonic model and study their jet physical properties. Our main results can be summarized as follows. (1) We find that most LBLs cannot be fitted by the one-zone synchrotron-self-Compton (SSC) model. This indicates that external photons play a crucial role in the high-energy emission of LBLs, therefore we suggest that LBLs are masquerading BL Lacs. (2) We suggest that the γ-ray emitting regions of LBLs are located outside the broad-line region and within the dusty torus. (3) By extending the analytical method to all types of LSPs in Fermi-4LAC (using historical data), we find that the high-energy peaks of some flat spectrum radio quasars and blazar candidates of unknown types can be attributed to the SSC emission, implying that the importance of external photons could be minor. We suggest that the variability time-scale may help distinguish the origin of the high-energy peak.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call