Abstract

The fundamental characteristics and physical properties of kenaf (Hibiscus cannabinus L.) fibers cultivated and subjected to three different water frequencies in Universiti Putra Malaysia, were analyzed. For deep analysis, which includes micro-scale viewing for identification of kenaf cell wall structure, fibers were viewed in order to study the physical characteristics, anatomy, and lignin distribution. The chemical composition was determined considering Technical Association of Pulp and Paper Industry (TAPPI) methods. Water stress treatments were imposed on the plants four weeks after germination when they had attained more than four leaves: daily watering based on soil field capacity (100% ER; well watered), water stress imposition 1 month after seedling establishment completion (1 MAS) and water stress imposition at flowering stage (AFS). Each water treatment was replicated three times in a randomized complete block design (RCBD) in split plot arrangement with water treatments as the main plots and the varieties as the sub-plots; irrigation system was applied for the purpose. Different water treatments and different varieties at the end of experimental period had significant impact on fiber dimensions and physiological attributes. Fiber quality attributes, gas exchange rate and Growth parameters were affected in negative way when all varieties had been subjected to water stress regardless of time of stress imposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.