Abstract

BackgroundCholesterol crystallization is an essential step toward gallstone formation. Although model bile studies showed that competition occurs between the gallstone surface and the surrounding aqueous phase for cholesterol molecules available for crystallization, this has not been investigated in human bile.MethodsFresh gallbladder bile was obtained during laparoscopic cholecystectomy from 13 patients with cholesterol (n = 10) or pigment (n = 3) stones. Small cholesterol gallstones were collected from another two patients. Both native and ultrafiltered bile with or without added gallstones was analysed by polarized light microscopy for the presence of arc-like and needle-like anhydrous cholesterol crystals and classic cholesterol monohydrate crystals. Weight of the added stones was evaluated before and after 21 days of bile incubation.ResultsIn unfiltered bile, the presence of stones was associated with a trend towards less anhydrous cholesterol crystals, but significantly more aggregated cholesterol monohydrate crystals. In ultrafiltered bile, the presence of stones tended to inhibit the formation of arc-like or needle-like crystals and was associated with significantly greater amounts of both plate-like and aggregated cholesterol monohydrate crystals. After 21 days of the incubation, stone weight was decreased in both unfiltered (–4.5 ± 1.6%, P = 0.046) and ultrafiltered bile (–6.5 ± 1.5%, P = 0.002). Bile from pigment-stone patients was clear in the absence of stones, but showed early appearance of plate-like and aggregated cholesterol monohydrate crystals in all samples to which cholesterol gallstones were added.ConclusionsThe physical presence of cholesterol gallstones in both native and filtered bile greatly influences cholesterol crystallization pathways. Whereas cholesterol monohydrate crystals increase, anhydrous cholesterol crystals tend to be inhibited. Detachment of solid cholesterol crystals from the gallstone surface may explain these findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.