Abstract

We provide a physical interpretation and explanation of the morphology-density relation for galaxies, drawing on stellar masses, star formation rates, axis ratios and group halo masses from the Sloan Digital Sky Survey. We first re-cast the classical morphology-density relation in more quantitative terms, using low star formation rate (quiescence) as a proxy for early-type morphology and dark matter halo mass from a group catalog as a proxy for environmental density: for galaxies of a given stellar mass the quiescent fraction is found to increase with increasing dark matter halo mass. Our novel result is that - at a given stellar mass - quiescent galaxies are significantly flatter in dense environments, implying a higher fraction of disk galaxies. Supposing that the denser environments differ simply by a higher incidence of quiescent disk galaxies that are structurally similar to star-forming disk galaxies of similar mass, explains simultaneously and quantitatively these quiescence -nvironment and shape-environment relations. Our findings add considerable weight to the slow removal of gas as the main physical driver of the morphology-density relation, at the expense of other explanations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.