Abstract

Aluminium, iron and plastic are materials which are extensively used at both industry and individual levels. However, significant amounts of aluminium, iron and plastic end up in the environment. Specifically, bottle caps made of these materials are often thrown away, with or without bottles, and appear among the common plastic debris entering the world’s oceans and beaches. More than 20 million bottle caps and lids have been identified during beach-cleaning campaigns over the last 30 years. To recover bottle caps from the shores, conventional technologies can be used. In this paper, the physical properties of used metal and plastic bottle caps were examined and related to the settling and rising velocities of the caps, as well as their drag coefficients and hydrodynamic modes in water environments, with respect to gravity separation. The sample contained aluminium, iron, high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) bottle caps. The findings revealed that the density differences between the bottle caps resulted in the terminal settling velocities of aluminium and iron particles, which were significantly higher than the rising velocities of the plastic caps. The results allowed us to design a flowsheet for bottle cap recovery from beach coasts in order to reduce environmental impact and produce add-on plastic and metal products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.