Abstract

The problem of determination of the cold low diameter wire (diameter less than 0.1mm) drawing process parameters for hardly deformable biocompatible magnesium alloys by using the mathematical mesoscale model is described in the paper. The originality of the considered alloys (MgCa0.8, A×30) is the intergranular fracture mechanism associated with small strains (0.07-0.09). In previous authors works it was proven that the material state directly before appearance of the microcracks is in the optimal state from the point of view of the recovery of the plasticity by annealing. The forecasting of this material state in drawing process requires the development of the model of intergranular fracture initiation and using this model in two cases: - modeling of the in-situ tests, what allows calibrating and validating of the model; - modeling of the drawing process, what allows optimizing of the drawing parameters. A new model of the microcracks initiation in mesoscale using the boundary element method is proposed. The in-situ tests, which allowed observing the microstructure evolution during deformation, are used for the calibration and validation purpose. The model was implemented into self-developed FE software Drawing2d, which is dedicated to the drawing process. The results of mesoscale simulation were verified by the experimental drawing process of 0.07 mm diameter wires according to developed technology. It was shown by analysis of microstructure that the model allows forecasting the microcracks initiation during the wire drawing process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call