Abstract

Hypotheses to explain the causes of diversity gradients have increasingly focused on the factors that actually change species numbers, namely speciation, extinction and dispersal. A common assumption of many of these hypotheses is that there should be phylogenetic signal in diversification rates, yet this assumption has rarely been tested explicitly. In this study, we compile a large data set including 328,219 species of plants, mammals, amphibians and squamates to assess the level of phylogenetic signal in their diversification rates. Significant phylogenetic signal was detected in all data sets, except for squamates, suggesting not only that closely related clades indeed might share similar diversification rates, but also that the level of phylogenetic signal might vary considerably between them. Moreover, there were intriguing differences among taxa in the rate of decay in phylogenetic autocorrelation over time, underscoring the existence of taxon-specific patterns of phylogenetic autocorrelation. These results have important implications for the development of more realistic models of species diversification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.