Abstract

C. elegans is a member of a group of nematodes called rhabditids, which encompasses a large number of ecologically and genetically diverse species. A new, preliminary phylogenetic analysis is presented for concatenated sequences of three nuclear genes for 48 rhabditid and diplogastrid species (including 10 Caenorhabditis species), as well as four species representing the outgroup. Although many relationships are well-resolved, more data are still needed to resolve some key relationships, particularly near the base of the rhabditid tree. There is high confidence for two major clades: (1) a clade comprising Mesorhabditis Parasitorhabditis, Pelodera, Teratorhabditis plus a few other species; (2) a large clade (Eurhabditis) comprising most of the remaining rhabditid genera, including Caenorhabditis and its sistergroup Protorhabditis-Prodontorhabditis-Diploscapter. Eurhabditis also contains the parasitic strongylids, the entomopathogenic Heterorhabditis, and the monophyletic group Oscheius which includes the satellite model organism O. tipulae. The relationships within Caenorhabditis are well resolved. The analysis also suggests that rhabditids include diplogastrids, to which the second satellite model organism Pristionchus pacificus belongs. Genetic disparity within Caenorhabditis is as great as that across vertebrates, suggesting Caenorhabditis lineages are quickly evolving, ancient, or both. The phylogenetic tree can be used to reconstruct evolutionary events within rhabditids. For instance, the reproductive mode changed multiple times from gonochorism to hermaphroditism, but only once from hermaphroditism to gonochorism. Complete retraction of the male tail tip, leading to a blunt, peloderan tail, evolved at least once. Reversions to unretracted tail tips occurred within both major rhabditid groups. The phylogeny also provides a guide to species which would be good candidates for future genome projects and comparative studies.

Highlights

  • The phylogenetic relationships of Caenorhabditis and other rhabditids rhabditids include diplogastrids, to which the second satellite model organism Pristionchus pacificus belongs

  • A phylogeny for rhabditids provides an important foundation for comparative biology using C. elegans, "satellite" model systems Pristionchus pacificus, Oscheius tipulae, and other Caenorhabditis species with sequenced genomes (C. briggsae, C. remanei, C. japonica, and Caenorhabditis n. sp. represented by strain CB5161 among others; see Evolution of development in nematodes related to C. elegans)

  • It will be important to establish who are the closest relatives of rhabditids, to sort out the earliest lineages of rhabditids, and to further elucidate the relationships among members of the Eurhabditis group

Read more

Summary

Overview of rhabditid relationships

Eurhabditis includes a monophyletic genus Oscheius that comprises two separate clades, one of leptoderan species, the Insectivora group, and another of peloderan species, the Dolichura group, as proposed by Sudhaus and Hooper (1994; see Figure 4). One member of this latter group, Oscheius tipulae (represented here by strain CEW1) is used as a satellite model organism for comparative studies of development (see Evolution of development in nematodes related to C. elegans; Sommer, 2000) and molecular biology For more about Caenorhabditis biodiversity and a phylogenetic hypothesis incorporating other Caenorhabditis species, see Ecology of Caenorhabditis species ( Sudhaus and Kiontke, 1996)

Strongylids and diplogastrids are rhabditids
Reproductive mode
Morphological evolution
Findings
Resources for comparative biology using rhabditids
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.