Abstract

With the improvement in people's living standards, the development and application of smart textiles are receiving increasing attention. In this study, a carbon nanosurface was successfully coated with a SiO2 layer to form C@SiO2 nanomaterials, which improved the dispersion of carbon nanomaterials in an aqueous solution and enhanced the absorption of light by the carbon nanoparticles. C@SiO2 nanoparticles were coupled on the surface of silk fabric with the silane coupling agent KH570 to form C@SiO2 nanosilk fabric. The silk fabric that was subjected to such surface modification was endowed with a special photothermal function. The results obtained with scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and infrared spectroscopy (FTIR) showed that C@SiO2 nanoparticles were successfully modified on the surface of the silk fabric. In addition, under the irradiation of near-infrared light with a power of 20 W and a wavelength of 808 nm, the C@SiO2 nanosilk fabric experienced rapid warming from 23 °C to 60 °C within 30 s. After subjecting the functional fabric to hundreds of photothermal experiments and multiple washes, the photothermal efficiency remained largely unchanged and proved to be durable and stable. In addition, the thermogravimetric (TG) analysis results showed that the C@SiO2 nanoparticles contributed to the thermal stability of the silk fabric. The UV transmittance results indicated that C@SiO2 nanofabric is UV-resistant. The silk modification method developed in this study is low-cost, efficient, and environmentally friendly. It has some prospects for future applications in the textile industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call