Abstract
There is a distinct leaf shape polymorphism within a single plant of P. euphratica Olivier. The anatomical structure, carbon isotope discrimination (Δ13C), and stomatal and photosynthetic behaviour were investigated in broad-ovate (BOL) and lanceolate (LL) leaves, located at the top and bottom in crown, respectively, of a mature Euphrates poplar growing in its native habitat. Both types of leaves had a non-Kranz anatomy and low Δ13C values. However, Δ13C of a LL was in average 3.2‰ larger than that of a BOL. In comparison with the LL, the BOL had a smaller stomatal conductance, causing subsequent decreases in transpiration rate and ratio of CO2 concentrations in intercellular spaces to air. Carbon assimilation rate and water use efficiency were higher in the BOLs than in the LLs. The BOL exhibited C4-like enzymological features, the activity of glycollate oxidase, and the ratio of activities of ribulose-1,5-bisphosphate carboxylase (RuBPC) to phosphoenolpyruvate carboxylase (PEPC) was lower in BOL than in LL throughout the whole growing season. The lowered ratio of RuBPC/PEPC in BOL was mainly associated with a marked decline in the activity of RuBPC, and only a slight increase in the activity of PEPC. These differences might contribute to microclimate adaptation in both types of leaves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.