Abstract

The small spotted dogfish Scyliorhinus canicula and the blackmouth dogfish Galeus melastomus, whose depth distributions overlap in the upper part of the slope (c. 500 m depth), where they have access to the same prey community, have well-developed eyes and a pure-rod retina with a single layer of photoreceptors. Interspecific differences in rod outer segment length (LROS) within retinal regions were found. In the periphery and the retinal centre G. melastomus showed a LROS 24 and 30% longer, respectively, than S. canicula and, therefore, a potential for increased sensitivity. In both species longer LROS were always found in correspondence with the retinal centre where the ganglion cell topography formed a horizontal meridian that allowed for better discrimination of the horizon in the visual field. In this area LROS reached 53·4±4·1μm in S. canicula and 77·1±10·5μm in G. melastomus against 46·3±4·2μm and 61·1±10·1μm in the retinal periphery. No significant differences were recorded in LROS and rod density during growth. In both species, a rapid increase of theoretical visual acuity was found to be related to an increase in fish LT and lens size. Visual acuity ranged between 1·7 and 3 cycles degree-1 in S. canicula and 2·4 and 4·2 in G. melastomus. The G. melastomus rod visual pigment showed the characteristic spectral adaptation to vision in deep-water (λmax of 481 nm), but was also well placed to detect the bioluminescence of some of its main prey species. In S. canicula the visual pigment absorption (λmax of 496 nm) was more typical of shallow water living fishes. The opsin sequences of the two visual pigments are discussed and key amino acid sites were identified where sequence changes could be responsible for the spectral absorption differences between the two species. The possible relationship between LROS, visual acuity, visual pigment absorption, depth distribution and feeding behaviour are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.