Abstract
In this paper we report the results of optical characterization of 4,4-N,N(')-dicarbazolyl-1,1(')-biphenyl (CBP), known as a host material for phosphorescent light emitting devices. Using absorption, steady state, and time-resolved spectroscopy, we explore the singlet and triplet states in solid and solution samples of CBP. In solutions we observe two distinct short-lived states with well-resolved emission originating from individual molecule singlet states (at 365 and 380 nm) and "quenching" low energy (LE) states (at 404 and 424 nm). The latter are seen only in saturated solutions and solid samples. Both of those species have different lifetimes. After UV exposure of very concentrated degassed solution the intensities of the LE bands starts to decrease. The longer the solution is exposed to UV, the less emission is seen at 404 and 424 nm, until it is totally gone. The spectrum of the highly concentrated solution is then the same as the spectrum of dilute solution, i.e., only emission at 365 and 380 nm is present. An increase in intensities of the singlet emission peaks correlates with an increase in UV exposure time. Similar behavior is observed in evaporated CBP film. We propose that this behavior is due to chemical instability of the weak N-C bonding of carbazolyl moiety-this creates new degradational species over time which dissociate after exposure to UV. We believe this to be the reason for variation in CBP fluorescence and delayed fluorescence spectra recorded by various research groups. Further, we detected two types of very long-lived states. One of these states (higher energy) is ascribed to molecular phosphorescence emission, the other to emission from low energy triplet trap states which we relate to degradational species. We propose that triplets are more easily caught by these latter sites when their hopping rate increases, and they emit inefficiently from these lower energy sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.