Abstract

By collecting simultaneously optical and chemical/morphological data from nanoscale volumes, the Photonic Atom Probe (PAP) can be applied not only to the study of the relationship between optical and structural properties of quantum emitter but also to evaluate the influence of other factors, such as the presence of point defects, on the photoluminescence. Through the analysis of multiple layers of InGaN/GaN quantum dots (QDs), grown so that the density of structural defects is higher with increasing distance from the substrate, we establish that the light emission is higher in the regions exhibiting a higher presence of structural defects. While the presence of intrinsic point defects with non-radiative recombination properties remains elusive, our result is consistent with the fact that QD layers closer to the substrate behave as traps for non-radiative point defects. This result demonstrates the potential of the PAP as a technique for the study of the optical properties of defects in semiconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.