Abstract

A novel reddish orange phosphor CaIn2O4:Sm3+ codoped with Zn2+ or Al3+ ions was prepared by solid state reaction and their luminescence properties were investigated under near ultraviolet excitation. The strategy of Zn2+ or Al3+ ions codoping was used with the aim to improve the luminescence properties of CaIn2O4:Sm3+, but the concrete effects of the two ions is different. The introduction of Zn2+ ions can produce defects that favor charge balance in CaIn2O4:Sm3+ to facilitate its photoluminescence. The effect of Al3+ ions codoping can effectively transfer energy from charge‐transfer absorption band to characteristic transition of Sm3+ ions, utilizing more energy from host absorption for the photoluminescence of Sm3+ ions. Based on these mechanisms, the luminescence intensity of CaIn2O4:0.6%Sm3+ was enhanced to 1.59 times and 1.51 times when codoping amount of Zn2+ and Al3+ ions reached 0.6%. However, the chromaticity coordinates of CaIn2O4:0.6%Sm3+ almost did not have any changes after Zn2+ ions or Al3+ ions codoping; those are still located at reddish orange region. The excellent luminescence properties of CaIn2O4:0.6%Sm3+,0.6%Zn2+ and CaIn2O4:0.6%Sm3+,0.6%Al3+ demonstrate that they both have potential application value as new‐style reddish orange phosphors on light‐emitting diode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.